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The V., matrix element: Measurement from exclusive

processes
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@ The amplitude F must be calculated in the theory
o Extremely difficult task, QCD is non-perturbative

o Can use effective theories (HQET) to say something about F
e Separate light (non-perturbative) and heavy degrees of freedom as mqg — oo
o limyg oo F(w) = &(w), which is the Isgur-Wise function
e We don’t know what &(w) looks like, but we know &(1) =1
o At large (but finite) mass F(w) receives corrections O (as, AQZD>

m

@ Reduction in the phase space (w? — 1)% limits experimental results at w =~ 1

o Need to extrapolate |Vey|? [1cw F(w)|* to w =1
o This extrapolation is done using well established parametrizations
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«» matrix element: The parametrization issue

All the parametrizations perform an expansion in the z parameter

_VeFi-VaN
7\/w+1+m

) Boyd—G rinstein-Lebed (BG L) Phys. Rev. Lett. 74 (1995) 4603-4606
Phys.Rev. D56 (1997) 6895-6911
fx (w) B E anz Nucl.Phys. B461 (1996) 493-511

f x ¢f X n=0

e By, Blaschke factors, includes contributions from the poles
e ¢y, is called outer function and must be computed for each form factor

o Weak unitarity constraints 3 |an|> <1
(] Caprini—LeIIouch—Neubert (CLN) Nucl. Phys. B530 (1998) 153-181

Flw)oc 1= pPz+c2” — d2®, with ¢ = fu(p), d = fulp)

o Relies strongly on HQET, spin symmetry and (old) inputs
e Tightly constrains F(w): four independent parameters, one relevant at w =1

* €0 at non-zero recoil
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@ CLN seems to underestimate the

L ++ slope at low recoil
10 _b++ CLN+LOSR o The BGL value of |V] is
£ NG, BGL+LCSR compatible with the inclusive
—~ 0.6 S
o =S one
1.0 1.1 1.2 1.3 1.4 1.5

|Vep| = 41.7 4 2.0(x107?)

From Phys. Lett. B769 (2017) 441-445 using Belle data from

arXiv:1702.01521 and the Fermilab/MILC'14 value at zero recoil

o Latest Belle dataset and Babar analysis seem to contradict this picture

@ From Babar's paper arXiv:1903.10002 BGL is compatible with CLN and far from
the inclusive value

o Belle's paper arXiv:1809.03290v3 finds similar results in its last revision
@ The discrepancy inclusive-exclusive is not well understood
o Data at w = 1 is urgently needed to settle the issue
@ Experimental measurements perform badly at low recoil

We would benefit enormously from a high precision lattice calculation.at w. > 1
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ensions in lepton universality
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o Current ~ 30 — 40 tension with the SM
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Calculating V., on the lattice: Formalism

@ Form factors

(D*(pp~, )| V* |B(pB))
2\ /g mp-

1
_ T Ux_uv
—26 Epo

VUG hy (W)

(D*(pp-, )| A* |B(ps)) _
2/mp mp-

%ey* 9" (1 4+ w) ha, (w) — v (vpha, (W) + v, hag (w))]

@ V and A are the vector/axial currents in the continuum
@ The hx enter in the definition of F

@ We can calculate h 4, , ;v directly from the lattice
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Calculating V., on the lattice: Formalism

@ Helicity amplitudes

w2 —1

Hy=— 2 "~
o r(1+ 72— 2wr)

(1 +w)ha, (w) + (wr = Dha, (w) + (r — w)hag(w)]

@ Form factor in terms of the helicity amplitudes

2 1—2wr+1r?
x(w) [F|" =
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Introduction: Available data and simulations

@ Using 15 Ny =2+ 1 MILC ensembles of sea asqtad quarks
@ The heavy quarks are treated using the Fermilab action
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Analysis: Probing different ratios

@ In our previous talks we have shown some differences between experimental
results of |F|? at large recoil and our predictions

@ The only missing puzzle in our calculation were the discretization errors,
which have been preliminarly included in our chiral-continuum extrapolation

@ We were expecting the discretization errors to account for this different
behavior at large recoil

@ Our strategy so far:

o Fit the D* two-points at zero and non-zero momentum
o Use the fit results for the overlap factors and the energies to remove the extra
factors arising in the ratios

Example: The double ratio

3 t,A]‘ 3 t,AJ‘
Cpiph(p, t, T)Cpf(py,t,T)
CFEY 5 (0,6,T) CPP5 1 (0,4,T)

*_yD*

Mp  Z}e(PL) (5o (pr)- 14+w 2
e p«(PpL)—Mp=)T h w
Bo- (1) 23-(0) aw)
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Analysis: Probing different ratios

@ We tried an alternative procedure that differs on the way the discretization
errors are accounted for, specially at large recoil

This procedure can act as a crosscheck of our results

Remove the Z factors using a different ratio (not fit results)

@ New ratio

A A
CHLB ot T) | CHSE Lt T) [ OB

A A 2
C%piDl* (O’ i, T) C]z’piDl* (07 L, T) C’Dp*t (pJ_a t)
@ We still need to remove the energy factors
@ The 2pts are averaged over neighbouring points

The main difference between the new and the old ratio is related to how the
discretization (and statistical) errors affect the large momentum behavior
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Results: Chiral-continuum fits

Extrapolation
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o Left Old fit, Right New fit. Preliminary blinded results.

@ Both plots differ on the accounting of discretization effects, which seem to be
large at large recoil
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Results: Chiral-continuum fits
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Results: Chiral-continuum fits
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@ Preliminary blinded results
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Analysis: Preliminary error budget

Our preliminary chiral-continuum extrapolation includes all the errors, and we
show the most significant ones in the error budget

Source hyv (%) | ha, (%) | ha, (%) | ha, (%)
Statistics 1.1 0.4 4.9 1.9
Isospin effects 0.0 0.0 0.6 0.3
XPT/cont. extrapolation 1.9 0.7 6.3 2.9
Matching 1.5 0.4 0.1 1.5
Heavy quark discretization* 2.5 1.2 9.0 6.0

Errors at w = 1.10
*Preliminary estimate, analysis in progress

@ The inclusion of the discretization errors in the chiral-continuum
extrapolation puts in evidence that the discretization errors are the most
important contribution to the final error

@ Our discretization errors are not final and must be crosschecked carefully

@ Bold marks errors to be reduced/removed when using HISQ for light quarks

o [talic marks errors to be reduced/removed when using HISQ for heavy quarks
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Analysis: z-Expansion

@ The BGL expansion is performed on different (more convenient) form factors
Phys.Lett. B769, 441 (2017), Phys.Lett. B771, 359 (2017)

hv(w) o a2
VB mp-  ¢g(2)By(2) zj: !
— 1 j

:\/quO ch

~ 07(2)Br (2) B]-'1
fg :7(12 HS Z d Z]
mp«vVw?2 —1 ¢]—‘2 BJ—‘2 -
e Constraint F1(z =0) = (mp —mp+)f(z =0)
e Constraint (1 +w)m%(1 —r)F1(z = 2Max) = (1 4+ 7)Fa(2 = 2Max)
@ BGL (weak) unitarity constraints (all HISQ will use strong constraints)

doar<1, > p+a<1, > d<l
j j J
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Analysis: z expansion fit procedure

@ Several different datasets

o Our lattice data

e BaBar BGL fit arXiv:1903.10002
o Belle tagged dataset arXiv:1702.01521
o Belle untagged dataset arXiv:1809.03290

@ Several different fits

o Lattice form factors only
o Experimental data only (one fit per dataset)
e Joint fit lattice + experimental data

@ Each dataset is given in a different format, and requires a different amount of
processing

o Different fitting strategy per dataset

Assume V,;, = V3BT for the only Belle data fits to have a common
normalization for the coefficients (just for the plots)
All the experimental and theoretical correlations are included in all fits
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Pure-lattice prediction and joint fit

Separate fits Separate fits
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Results: Separate fits, angular bins
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Results: Joint fit, angular bins with new ratio

dr'/dw x 10% GeV

dl'/d cosb, x 10** GeV

50

10

30

20

eV

2
X
- st i 3 s -
b LaitgexV,, K
4 Balldplaged ™ | o
4 Belle untagged
Belle tagged
|
¢ BaBar synthetic
0 11 1.2 13 14 15 10 0.5 0.0 0.5 10
w cosh
1.25
400
Z
2 375
y E
% 3.50
=
y é 3.25
N\ 3.00
= 275
~1.0 —~0.5 0.0 0.5 1.0

cost),




Results: R(D™)
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Conclusions

@ We are experiencing significant delays due to unexpected difficulties in the
calculation
o The new ratio shows that the discretization errors (which have been included
very recently) are large, and we need to carefully account for them to keep
them under control
o This was expected, but the magnitude of the discretization effects is larger
than what we initially thought

@ The large slope for the decay amplitude showed in previous talks is under
review

@ As we say on every talk, please, do not use our preliminary results in any
calculation

@ We need to understand better the systematic errors of our data

@ Well established roadmap to reduce errors in our calculation with newer
lattice ensembles

@ The net steps in our roadmap should largely reduce our systematic errors
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